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Let C *
n , n=0, 1, ..., *>&1�2 be the ultraspherical (Gegenbauer) polynomials,

orthogonal on (&1, 1) with respect to the weight (1&x2)*&1�2. Denote by `n, k(*),
k=1, ..., [n�2] the positive zeros of C *

n enumerated in decreasing order. The
problem of finding the ``extremal'' function f for which the products f (*) `n, k(*) are
increasing functions of * is of recent interest. Ismail, Letessier, and Askey con-
jectured that f (*)=(*+1)1�2 is the function to solve this problem. We prove the
conjecture for sufficiently large n and some related results. � 1996 Academic Press, Inc.

1. Introduction

The monotonic behaviour of the zeros [`n, k(*)] of ultraspherical poly-
nomials is a question of interest both from a mathematical and physical
point of view because `n, k(*), k=1, ..., n are the positions of equilibrium of
n unit charges in (&1, 1) in the field generated by two charges located at
&1 and 1 whose common value is *�2+1�4 [12, pp. 140�142]. A well
known result of Stieltjes [11; 12, Theorem 6.21.1] asserts that for any fixed
n�2 and k, 1�k�[n�2] the positive zeros `n, k(*) of C *

n are decreasing
functions of *. It is important to know which is the extremal function f
forcing f (*) `n, k(*) to increase with *. In order to answer this question we
need a formal definition for extremality. Ahmed, Muldoon and Spigler [1,
Remark 4] suggested considering the problem in its greatest generality,
namely, for any admissible n and k, to seek a function fn, k(*) for which
Zn, k(*) := fn, k(*) `n, k(*) is increasing function of *. Natural requirements
are that fn, k be positive and differentiable. Since

0�Z$n, k(*)= f $n, k(*) `n, k(*)+ fn, k(*) `$n, k(*),

article no. 0030

88
0021-9045�96 �18.00
Copyright � 1996 by Academic Press, Inc.
All rights of reproduction in any form reserved.

* This research is supported by the Royal Society Postdoctoral Fellowship Programme and
the Bulgarian Ministry of Science under Grant MM-414.



File: 640J 291602 . By:CV . Date:06:02:00 . Time:16:07 LOP8M. V8.0. Page 01:01
Codes: 2871 Signs: 1913 . Length: 45 pic 0 pts, 190 mm

`n, k(*)>0, fn, k(*)>0 and ` $n, k(*)<0 then

f $n, k(*)�fn, k(*)�&`$n, k(*)�`n, k(*) for *>&1�2. (1)

Thus we state the following problem:

(P1) For any fixed n and k, 1�k�[n�2], determine the function fn, k ,
positive for *>&1�2, for which the products Zn, k are increasing functions
of * and f $n, k (*)�fn, k (*) is minimal.

It is easily seen from (1) that P1 is equivalent to the problem of finding
`$n, k(*)�`n, k(*). If instead, we seek a function f which depends on n but not
on k, then P1 can be reformulated as

(P2) For any integer n�2, determine the function fn(*), positive for
*>&1�2, such that for each k, 1�k�[n�2] the products fn(*) `n, k(*)
are increasing functions of * and f $n(*)�fn(*) is minimal.

If we are interested in a universal function the problem is

(P3) Which is the function f, positive for *>&1�2, such that for any
fixed n�2 and k, 1�k�[n�2], the products f (*) `n, k(*) are increasing
functions of * and f $(*)�f (*) is minimal?

This latter problem is the precise formulation of the problem posed in
the abstract. The notion ``extremal'' for the above stated problems is equiv-
alent to the minimality of the quotient f $n, k �fn, k , f $n �fn and f $�f, respectively.
Obviously this requirement determines the unknown function up to a con-
stant factor. Moreover, if we find the solutions fn, k of the most general
problem P1 then the solutions fn of P2 and f of P3 could be consequently
derived from

f $n(*)�fn(*)= max
1�k�[n�2]

f $n, k(*)�fn, k(*),

and

f $(*)�f (*)=sup
n�2

f $n(*)�fn(*).

Therefore in order to solve these problems we need upper bounds for
&`$n, k �`n, k .

There have been many attempts to solve P2 and P3. Laforgia [7]
proved that each *`n, k(*) is an increasing function of * for 0�*<1.
Ahmed, Muldoon and Spigler [1] refined a previous result of Spigler [10]
to prove that if n�2 and fn(*)=(2*(2n+1)+2n2+1)1�2, then each
fn(*) `n, k(*) increases with * for &1�2<*<3�2. Ismail and Letessier [5]
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conjectured that *1�2`n, k(*) increases with *, *�0, and Askey observed
that f (*)=(*+1)1�2 could be a solution of P3. Askey's suggestion was
formulated as Conjecture 3 in [4]. In what follows we shall refer to this as
Ismail�Letessier�Askey conjecture (ILAC). Note that if one proves that
each (*+1)1�2 `n, k(*) is an increasing function of * for *>&1�2 then
f (*)=(*+1)1�2 will be the solution of P3 because `2, 1=(2(*+1))&1�2. It
follows immediately from [1, Eq. (3.7)] that ILAC is true for &1�2<*�3�2.

The purpose of this paper is to establish some monotonicity results
concerning multiples of positive zeros of C *

n . First we prove ILAC for
sufficiently large n.

Theorem 1. Let & be a nonnegative integer. Then for any n>
1+(&2+3&+3�2)1�2 and k, 1�k�[n�2] the products (*+1)1�2 `n, k(k) are
increasing functions of * for &1�2<*�3�2+&.

This result verifies ILAC for an interval with length &+2 if n>&+5�2. On
the other hand direct calculations show that the conjecture is true if
2�n�5. Then one easily gets

Corollary 1. If n>2 and 1�k�[n�2] then (*+1)1�2 `n, k(*) is an
increasing function of * for &1�2<*�9�2.

A result which holds for *�1�2 follows.

Theorem 2. Let *�1�2. Then for any admissible n and k the function

(*&1�2)1�2 `n, k (*) (2)

increases as * increases.

Despite the fact that the function f (*)=(*&1�2)1�2 is not the extremal
one, it is a universal function which forces the products (2) to increase on
[1�2, �).

The next theorem concerns the monotonic behaviour of the largest zero
of C *

n .

Theorem 3. Let *>&1�2. Then

(i) for any fixed even n

(*+1)1�2 `n, 1(*)

is an increasing function of *.
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(ii) for any fixed odd n�3

(*+2)1�2 `n, 1(*)

is an increasing function of *.

The function f (*)=(*+2)1�2 is the extremal one to set in (ii) because
`3, 1=(2(*+2)�3)&1�2. It seems that Theorem 3 holds not only for the
largest zeros of C *

n but for all the positive zeros. Thus ILAC could be
refined by setting (*+1)1�2 for n even and (*+2)1�2 for n odd as extremal
funtions.

2. Preliminaries

Denote by g*
n and h*

n the hypergeometric polynomials of degree n

gh
n(x) := 2F1(&n, n+*; 1�2; x)

and

h*
n(x) := 2F1(&n, n+*+1; 3�2; x).

It is well known that C *
2n(x1�2) and x&1�2C *

2n+1(x
1�2) are constant multiples

of g*
n(x) and h*

n(x), respectively (see [12, Section 4.7]). This fact and
some simple computations show that g*

n and h*
n , n=0, 1, ... are orthogonal

polynomial sequences on (0, 1) with respect to the weight functions
|e(x)=x&1�2(1&x)*&1�2 and |o(x)=x1�2(1&x)*&1�2, respectively. Another
simple consequence is that the zeros of g*

n are `2
2n, k(*) and those of h*

n are
`2

2n+1, k(*), k=1, ..., n. On using (28) and (29) in [2, p. 103] we obtain the
following recurrence relations for g*

n and h*
n :

g*
0(x)=1

g*
1(x)=1&2(*+1) x

&xg*
n(x)=

(2n+1) (n+*)
2(2n+*)(2n+*+1)

g*
n+1(x)

&
4n2+4*n+*&1

2(2n+*&1)(2n+*+1)
g*

n(x)

+
n(2n+2*&1)

2(2n+*)(2n+*&1)
g*

n&1(x), (3)

h*
0(x)=1

h*
1(x)=1&2(*+2) x�3
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&xh*
n(x)=

(2n+3)(n+*+1)
2(2n+*+1)(2n+*+2)

h*
n+1(x)

&
4n2+4(*+1) n+3*
2(2n+*)(2n+*+2)

h*
n(x)

+
n(2n+2*&1)

2(2n+*)(2n+*+1)
h*

n&1(x). (4)

Furthermore, [ g*
n] and [h*

n] are sequences of birth and death process
polynomials. This notion is due to Karlin and McGregor [6]. Every
sequence of parametric birth and death process polynomials Qn(x; {) is
defined by

Q1(x; {)=1,

Q1(x; {)=[b0({)+d0({)&x]�b0({),

&xQn(x; {)=bn({) Qn+1(x; {)&(bn({)+dn({)) Qn(x; {)+dn({) Qn&1(x; {),

where bn({)>0, dn+1({)>0 for n�0 and d0({)�0. The coefficients bn({)
and dn({) are called birth rates and death rates, respectively. Ismail [3, 4]
pointed out that if the birth rates bn({) and the death rates dn({) are
increasing functions of {, then the largest zero of Qn(x; {) is also an
increasing function of {.

We shall prove two simple lemmas.

Lemma 1. Let q be a polynomial of degree n�3 with distinct real zeros.
Suppose that q is even (odd) if n is even (odd). Then every positive zero of
q$ is an increasing function of any positive zero of q.

Proof. We prove the lemma for even n. The proof for odd n is similar.
Assume without loss of generality that q is a monic polynomial. Since
it is even and has only real zeros then q(x)=(x2&x2

1) } } } (x2&x2
n�2),

0<xn�2< } } } <x1 . Suppose that !=xk for some k, 1�k�n�2. Then
q(x)=(x2&!2) r(x). The polynomial q$ is odd and by Rolle's theorem it
has n�2&1 positive zeros 'j , xj+1<'j<xj , j=1, ..., n�2&1. Let ' be one
of these zeros, say '='m . We claim that ' is an increasing function of !.
Let q=(x) :=(x2&(!+=)2) r(x) for some positive =. It follows immediately
from q$(')=0 that

r$(')=&2'r(')�('2&!2). (5)
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On the other hand q$=(')=2'r(')+('2&(!+=)2) r$('). On using (5) we obtain

q$=(')=2'((!+=)2&!2) r(')�('2&!2).

Therefore sign q$=(')=sign(r(')�('2&!2)). It is not difficult to see that if
'>! then sign r(')=(&1)m=sign q('). Similarly if '<! then sign r(')=
(&1)m=&sign q('). Hence

sign q$=(')=sign q(')=(&1)m. (6)

Denote by xi (=), i=1, ..., n�2 the positive zeros of q= . By Rolle's theorem
q$= has exactly one zero '(=) # (xm+1(=), xm(=)). On the other hand
sign q$=(xm+1(=))=(&1)m and sign q$=(xm(=))=(&1)m+1. This fact and (6)
give '(=)>'.

Lemma 1 is a slight extension of a classical result of V. Markov [8]. It
states that if p and q are polynomials of degree n whose zeros are real and
interlace then the zeros of p$ and q$ interlace in the same way as those
of p and q. V. Markov's result is formulated and proved as Lemma 2.7.1
in [9].

The repeated application of Lemma 1 yields

Corollary 2. Let q be a polynomial of degree n�3 with distinct real
zeros. Suppose that q is even (odd) if n is even (odd). Then every positive zero
of q(&), 0<&<n&1 is an increasing function of any positive zero of q.

Lemma 2. Let |(x) be a positive and continuous weight function on the
interval (a, b). Denote by [ pn(x; ;)] the polynomials orthogonal with respect
to | on the interval (a, ;), a<;�b. Then the zeros of pn(x; ;) are increasing
functions of ;.

Proof. Let x1(;), ..., xn(;) be the zeros of pn(x; ;). They are uniquely
implicitly determined by the equations

|
;

a

p2
n(x; ;)

x&xi (;)
|(x) dx=0, i=1, ..., n.

Differentiating the k th equation with respect to ; we obtain

&2 :
i{k

|
;

a

p2
n(x; ;)

(x&xi (;))(x&xk(;))
|(x) dx xi$(;)

&|
;

a

p2
n(x; ;)

(x&xk(;))2 |(x) dx x$k(;)

+|(;) p2
n(;; ;)�(;&xk(;))=0.
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All integrals in the sum above vanish because of the orthogonality. There-
fore

x$k(;)=|(;) p2
n(;; ;)(;&xk(;))&1<|

;

a

p2
n(x; ;)

(x&xk(;))2 |(x) dx>0.

3. Proofs of the Main Results

Proof of Theorem 1. We use induction with respect to &. For &=0 the
assertion follows from Theorem 3.1 in [1]. Recall that it states that if n�2
then

(*+(2n2+1)�(4n+2))1�2 `n, k(*)

increases with * for &1�2<*�3�2. Since (2n2+1)�(4n+2)�1 for
n�(3�2)1�2 then our theorem is true for &=0. Let & be any fixed positive
integer and assume that the assertion holds for all &$<&. We shall prove it
for &. Since n�1+(&2+3&+3�2)1�2>1+((&&1)2+3(&&1)+3�2)1�2 then
by the induction hypothesis the functions (*+1)1�2 `n, k(*) increase with *
for &1�2<*�&+1�2. It remains to show that they increase for
* # (&+1�2, &+3�2]. The above mentioned result of Ahmed, Muldoon
and Spigler is equivalent to the fact that the positive zeros of
C +

N((++(2N 2+1)�(4N+2))&1�2 x) increase for + # [&1�2, 3�2]. Substi-
tuting +=*&&, N=n+& we derive the following statement.

The positive zeros of

C *&&
n+&((*&&+(2(n+&)2+1)�(4n+4&+2))&1�2 x) (7)

increase for * # (&+1�2, &+3�2].
On the otherhand [12, Section 4.7] (C *

n(x))$=2*C *+1
n&1(x) and then

(C *&&
n+&(x))(&)=c(n, *, &) C *

n(x) with some nonzero constant c(n, *, &). Thus

[C*&&
n+&((*&&+(2(n+&)2+1)�(4n+4&+2))&1�2 x)](&)

=c1(n, *, &) C *
n((*&&+(2(n+&)2+1)�(4n+4&+2))&1�2 x). (8)

Observe that C *&&
n+&((*&&+(2(n+&)2+1)�(4n+4&+2))&1�2 x) is an

even (odd) polynomial in x if n+& is even (odd). Hence it follows
from Corollary 2, (7) and (8) that the positive zeros of
C*

n((*&&+(2(n+&)2+1)�(4n+4&+2))&1�2 x) increase with * for
* # (&+1�2, &+3�2]. This means that the products

(*&&+(2(n+&)2+1)�(4n+4&+2))1�2 `n, k(*)
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are increasing functions of * for * # (&+1�2, &+3�2]. Now the result
follows from the fact that the inequality

*&&+(2(n+&)2+1)�(4n+4&+2)�*+1

is equivalent to the requirement that n�1+(&2+3&+3�2)1�2.

Proof of Theorem 2. Note that (*&1�2)1�2 `n, k(*) increases if and only
if (*&1�2) `2

n, k(*) increases. We prove that (*&1�2) `2
2n, k(*), k=1, ..., n�2,

are increasing function of * on [1�2, �). The latter products are the zeros
of

s*
n(x) := g*

n(x�(*&1�2)).

It is easily seen that [s*
n] are orthogonal on (0, *&1�2) with respect to the

weight function |e(x; *) :=x&1�2(*&1�2&x)*&1�2. Let 1�2<*1<*2 and
[sn] be the polynomials orthogonal on (0, *1&1�2) with respect to the
restriction of |e(x; *2) to (0, *1&1�2). Denote by !k (*i), i=1, 2 and !k the
kth zero of s*i

n , i=1, 2 and sn , respectively. It must be proved that
!k(*1)<!k(*2). In order to this we prove that !k(*1)<!k and !k<!k(*2).
The first inequality follows immediately from Markov's theorem [12,
Theorem 6.12.1] and the fact that

�
�*

ln |e(x; *)=
�

�*
[(*&1�2) ln(*&1�2&x)]

=ln(*&1�2&x)+(*&1�2)�(*&1�2&x)

is an increasing function of x for x # (0, *). The inequality !k<!k(*2) is a
consequence of Lemma 2.

The proof that (*&1�2) `2
n, k(*) increases as * increases for odd n is

similar.

Proof of Theorem 3. First we consider the case of even n. Taking into
account the notes in the proof of Theorem 2 we have to prove that the
largest zero of G *

n(x) := g*
n(x�(*+1)) increases with * for *>&1�2. It

follows from (3) that [G *
n] are parameteric birth and death process poly-

nomial defined by

G *
0(x)=1,

G *
1(x)=1&2x,

&xG *
n(x)=Bn(*) G *

n+1(x)&(Bn(*)+Dn(*)) G *
n(x)+Dn(*) G *

n&1(x),
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where the birth and death rates are

Bn(*)=(*+1)
(2n+1)(n+*)

2(2n+*)(2n+*+1)
,

Dn(*)=(*+1)
n(2n+2*&1)

2(2n+*)(2n+*&1)
.

Recall that by the Perron�Frobenius theorem (see [13], used in [3, 4]) the
increase of birth rates and death rates yield the increase of the largest zero
of G *

n .

(n+1�2)&1 (2n+*)2 (2n+*+1)2 B$n(*)

=(n+2*+1)(2n+*)(2n+*+1)&(*+1)(n+*)(4n+2*+1)

=n(3*2+2(4n+1) *+4n2+2n+1).

Hence B$n(*)>0 for *�0. The expression in the brackets can be rewritten
in the form 4n2+2(4*+1) n+3*2+2*+1. Its discriminant is equal to
4*2&3. Therefore the expression is positive for |*|<- 3�2. Thus B$n(*)>0
for *>&1�2.

2n&1(2n+*)2 (2n+*&1)2 D$n(*)

=(2n+*)(2n+*&1)(2n+4*+1)&(*+1)(2n+2*&1)(4n+2*&1)

=(2n&1)(3*2+2(4n&1) *+4n2&2n+1).

Obviously D$n(*)>0 for *�0. The discriminant of the expression in the
brackets, 4n2+2(4*&1) n+3*2&2*+1, is again equal to 4*2&3 and
D$n(*)>0 for *>&1�2.

When n is odd we have to prove that the largest zero of H *
n(x) :=

h*
n(x�(*+2)) increases with * for *>&1�2. H *

n are birth and death process
polynomials with birth rates and death rates defined by

Bn(*)=(*+2)
(2n+3)(n+*+1)

2(2n+*+1)(2n+*+2)
,

Dn(*)=(*+2)
n(2n+2*&1)

2(2n+*)(2n+*+1)
.

Since

(n+3�2)&1 (2n+*+1)2 (2n+*+2)2 B$n(*)

=n(3(*+1)2+2(4n+1)(*+1)+4n2+2n+1)
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then B$n(*)>0 for *>&1.

2n&1(2n+*)2 (2n+*&1)2 D$n(*)

=(6n&1) *2+4(4n2+1) *+8n3+10n+2=: r(*).

The binomial r attains minimal value for *0<&1�2 and is positive for
*�0. One easily gets r(&1�2)=2n(4n2&2n+5)+(6n&1)�4>0 for n>0.
Thus r(*)>0 for *>&1�2. Therefore Dn(*) increases with *, *>&1�2.

Note added in proof. Part (i) of Theorem 3 was proved in a different way in [14].
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